ﻻ يوجد ملخص باللغة العربية
Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle $theta_e$ between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with $theta_e$, while the power of the self-localized mode has a broad maximum near $theta_e = 40$ deg, and exponentially vanishes near the critical angle $theta_e = 58$ deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles $58<theta_e<90$ deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.
We study the agility of current-tunable oscillators based on a magnetic vortex orbiting around a point contact in spin-valves. Theory predicts frequency-tuning by currents occurs at constant orbital radius, so an exceptional agility is anticipated. T
We demonstrate a high-quality spin orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and sys
Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially modified by re-injecting the emitted signal to the input of the oscillator after some delay. Numerical simulations for vortex magnetic tunnel junctions sho
Spin transfer driven excitations in magnetic nanostructures are characterized by a relatively large microwave emission linewidth (10 -100 MHz). Here we investigate the role of thermal fluctuations as well as of the non-linear amplitude-phase coupling
The mutual interaction between the different eigenmodes of a spin-torque oscillator can lead to a large variety of physical mechanisms from mode hopping to multi-mode generation, that usually reduce their performances as radio-frequency devices. To t