ﻻ يوجد ملخص باللغة العربية
Topological boundary and interface modes are generated in an acoustic waveguide by simple quasi-periodic patternings of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed. The experimental measurements reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q-factors localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.
The interplay between real-space topological lattice defects and the reciprocal-space topology of energy bands can give rise to novel phenomena, such as one-dimensional topological modes bound to screw dislocations in three-dimensional topological in
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known
Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state) and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify
Topological phononic crystals (PCs) are periodic artificial structures which can support nontrivial acoustic topological bands, and their topological properties are linked to the existence of topological edge modes. Most previous studies focused on t
The topological band theory predicts that bulk materials with nontrivial topological phases support topological edge states. This phenomenon is universal for various wave systems and has been widely observed for electromagnetic and acoustic waves. He