ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-electron interaction mediated indirect coupling of electron and magnetic ion or nuclear spins in self-assembled quantum dots

150   0   0.0 ( 0 )
 نشر من قبل Udson C. Mendes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show here the existence of the indirect coupling of electron and magnetic or nuclear ion spins in self-assembled quantum dots mediated by electron-electron interactions. With a single localized spin placed in the center of the dot, only the spins of electrons occupying the zero angular momentum states couple directly to the localized spin. We show that when the electron-electron interactions are included, the electrons occupying finite angular momentum orbitals interact with the localized spin. This effective interaction is obtained using exact diagonalization of the microscopic Hamiltonian as a function of the number of electronic shells, shell spacing, and anisotropy of the electron-Mn exchange interaction. The effective interaction can be engineered to be either ferromagnetic or antiferromagnetic by tuning the parameters of the quantum dot.



قيم البحث

اقرأ أيضاً

Using far-infrared spectroscopy, we investigate the excitations of self-organized InAs quantum dots as a function of the electron number per dot, 1<n<6, which is monitored in situ by capacitance spectroscopy. Whereas the well-known two-mode spectrum is observed when the lowest s - states are filled, we find a rich excitation spectrum for n=3, which reflects the importance of electron-electron interaction in the present, strongly non-parabolic confining potential. From capacitance spectroscopy we find that the electronic shell structure in our dots gives rise to a distinct pattern in the charging energies which strongly deviates from the monotonic behavior of the Coulomb blockade found in mesoscopic or metallic structures.
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots , leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
We estimate the spin relaxation rate due to spin-orbit coupling and acoustic phonon scattering in weakly-confined quantum dots with up to five interacting electrons. The Full Configuration Interaction approach is used to account for the inter-electro n repulsion, and Rashba and Dresselhaus spin-orbit couplings are exactly diagonalized. We show that electron-electron interaction strongly affects spin-orbit admixture in the sample. Consequently, relaxation rates strongly depend on the number of carriers confined in the dot. We identify the mechanisms which may lead to improved spin stability in few electron (>2) quantum dots as compared to the usual one and two electron devices. Finally, we discuss recent experiments on triplet-singlet transitions in GaAs dots subject to external magnetic fields. Our simulations are in good agreement with the experimental findings, and support the interpretation of the observed spin relaxation as being due to spin-orbit coupling assisted by acoustic phonon emission.
The electron spin coherence in n-doped and undoped, self-assembled CdSe/Zn(S,Se) quantum dots has been studied by time-resolved pump-probe Kerr rotation. Long-lived spin coherence persisting up to 13 ns after spin orientation has been found in the n- doped quantum dots, outlasting significantly the lifetimes of charge neutral and negatively charged excitons of 350 - 530 ps. The electron spin dephasing time as long as 5.6 ns has been measured in a magnetic field of 0.25 T. Hyperfine interaction of resident electrons with a nuclear spin fluctuations is suggested as the main limiting factor for the dephasing time. The efficiency of this mechanism in II-VI and III-V quantum dots is analyzed.
The main obstacle to coherent control of two-level quantum systems is their coupling to an uncontrolled environment. For electron spins in III-V quantum dots, the random environment is mostly given by the nuclear spins in the quantum dot host materia l; they collectively act on the electron spin through the hyperfine interaction, much like a random magnetic field. Here we show that the same hyperfine interaction can be harnessed such that partial control of the normally uncontrolled environment becomes possible. In particular, we observe that the electron spin resonance frequency remains locked to the frequency of an applied microwave magnetic field, even when the external magnetic field or the excitation frequency are changed. The nuclear field thereby adjusts itself such that the electron spin resonance condition remains satisfied. General theoretical arguments indicate that this spin resonance locking is accompanied by a significant reduction of the randomness in the nuclear field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا