ﻻ يوجد ملخص باللغة العربية
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.
We demonstrate the new class of variance reduction techniques for hadron propagator and nucleon isovector form factor in the realistic lattice of $N_f=2+1$ domain-wall fermion. All-mode averaging (AMA) is one of the powerful tools to reduce the stati
We examine the Dyson-Schwinger equation for the fermion propagator in quenched QED in three and four dimension based on spectral representation with vertex ansatz which preserves Ward-Takahashi Identity.An appropriate renormalization within dispersio
We discuss possible definitions of the Faddeev-Popov matrix for the minimal linear covariant gauge on the lattice and present preliminary results for the ghost propagator.
We present a multigrid based eigensolver for computing low-modes of the Hermitian Wilson Dirac operator. For the non-Hermitian case multigrid methods have already replaced conventional Krylov subspace solvers in many lattice QCD computations. Since t
In the continuum the definitions of the covariant Dirac operator and of the gauge covariant derivative operator are tightly intertwined. We point out that the naive discretization of the gauge covariant derivative operator is related to the existence