ﻻ يوجد ملخص باللغة العربية
We present a multigrid based eigensolver for computing low-modes of the Hermitian Wilson Dirac operator. For the non-Hermitian case multigrid methods have already replaced conventional Krylov subspace solvers in many lattice QCD computations. Since the $gamma_5$-preserving aggregation based interpolation used in our multigrid method is valid for both, the Hermitian and the non-Hermitian case,
We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational c
We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in
We study the isoscalar and isovector $J=0,1$ mesons with the overlap operator within two flavour lattice QCD. After subtraction of the lowest-lying Dirac eigenmodes from the valence quark propagator all disconnected contributions vanish and all possi
For embedded boundary electromagnetics using the Dey-Mittra algorithm, a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwells curl-curl matrix. Efficient curl-curl