ﻻ يوجد ملخص باللغة العربية
We examine the Dyson-Schwinger equation for the fermion propagator in quenched QED in three and four dimension based on spectral representation with vertex ansatz which preserves Ward-Takahashi Identity.An appropriate renormalization within dispersion integral smoothes the threshold behaviour of the fermion self energy in three dimension.Thus we avoid the infrared singurality in three dimension.The behaviour of the fermion propagator in three dimension near the threshold is then found to be similar to the four dimensional one.There exisit analytic solutions for arbitrary gauges and the full propagators are expressed in terms of hypergeometric function in four dimension.There is a possibility of dynamical chiral symmetry breaking in four dimension with vanishing bare mass.
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in
We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian $SU(N)$ gauge field within the Wigner function formalism. By using the covariant gradient expansion, we disentangle the Wigner equations in four-vector space up to the
We reassess an alternative CPT-odd electrodynamics obtained from a Palatini-like procedure. Starting from a more general situation, we analyze the physical consistency of the model for different values of the parameter introduced in the mass tensor.
We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector o
We give a gauge-covariant decomposition of the Yang-Mills field with an exceptional gauge group $G(2)$, which extends the field decomposition invented by Cho, Duan-Ge, and Faddeev-Niemi for the $SU(N)$ Yang-Mills field. As an application of the decom