ﻻ يوجد ملخص باللغة العربية
We study the (2+1)-dimensional Dirac oscillator in the presence of an external uniform magnetic field ($B$). We show how the change of the strength of $B$ leads to the existence of a quantum phase transition in the chirality of the system. A critical value of the strength of the external magnetic field ($B_c$) can be naturally defined in terms of physical parameters of the system. While for $B=B_c$ the fermion can be considered as a free particle without defined chirality, for $B<B_c$ ($B>B_c$) the chirality is left (right) and there exist a net potential acting on the fermion. For the three regimes defined in the quantum phase transition of chirality, we observe that the energy spectra for each regime is drastically different. Then, we consider the $z$-component of the orbital angular momentum as an order parameter that characterizes the quantum phase transition.
We study a minimal model that has a driven-dissipative quantum phase transition, namely a Kerr non-linear oscillator subject to driving and dissipation. Using mean-field theory, exact diagonalization, and the Keldysh formalism, we analyze the critica
We study the analytic structure for the eigenvalues of the one-dimensional Dirac oscillator, by analytically continuing its frequency on the complex plane. A twofold Riemann surface is found, connecting the two states of a pair of particle and antipa
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However
We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An SO(4) algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of
The sub-ohmic spin-boson model is known to possess a novel quantum phase transition at zero temperature between a localised and delocalised phase. We present here an analytical theory based on a variational ansatz for the ground state, which describe