ﻻ يوجد ملخص باللغة العربية
The sub-ohmic spin-boson model is known to possess a novel quantum phase transition at zero temperature between a localised and delocalised phase. We present here an analytical theory based on a variational ansatz for the ground state, which describes a continuous localization transition with mean-field exponents for $0<s<0.5$. Our results for the critical properties show good quantitiative agreement with previous numerical results, and we present a detailed description of all the spin observables as the system passes through the transition. Analysing the ansatz itself, we give an intuitive microscopic description of the transition in terms of the changing correlations between the system and bath, and show that it is always accompanied by a divergence of the low-frequency boson occupations. The possible relevance of this divergence for some numerical approaches to this problem is discussed and illustrated by looking at the ground state obtained using density matrix renormalisation group methods.
We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading and subleading terms in the temperature dependence of the inverse static local spin susceptibility at the quantum critical point, calculated using a nume
We show that the critical exponent of a quantum phase transition in a damped-driven open system is determined by the spectral density function of the reservoir. We consider the open-system variant of the Dicke model, where the driven boson mode and a
The effectiveness of the variational approach a la Feynman is proved in the spin-boson model, i.e. the simplest realization of the Caldeira-Leggett model able to reveal the quantum phase transition from delocalized to localized states and the quantum
Study of dissipative quantum phase transitions in the Ohmic spin-boson model is numerically challenging in a dense limit of environmental modes. In this work, large-scale numerical simulations are carried out based on the variational principle. The v
We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the