ﻻ يوجد ملخص باللغة العربية
We study the analytic structure for the eigenvalues of the one-dimensional Dirac oscillator, by analytically continuing its frequency on the complex plane. A twofold Riemann surface is found, connecting the two states of a pair of particle and antiparticle. One can, at least in principle, accomplish the transition from a positive energy state to its antiparticle state by moving the frequency continuously on the complex plane, without changing the Hamiltonian after transition. This result provides a visual explanation for the absence of a negative energy state with the quantum number n=0.
We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An SO(4) algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of
We study the (2+1)-dimensional Dirac oscillator in the presence of an external uniform magnetic field ($B$). We show how the change of the strength of $B$ leads to the existence of a quantum phase transition in the chirality of the system. A critical
We show how the two-dimensional Dirac oscillator model can describe some properties of electrons in graphene. This model explains the origin of the left-handed chirality observed for charge carriers in monolayer and bilayer graphene. The relativistic
The multiscale entanglement renormalization ansatz describes quantum many-body states by a hierarchical entanglement structure organized by length scale. Numerically, it has been demonstrated to capture critical lattice models and the data of the cor
We introduce an exact mapping between the Dirac equation in (1+1)-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1+1)-dimensional black hole requires a QRM with one- and two-photon terms that can be