ﻻ يوجد ملخص باللغة العربية
We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An SO(4) algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of Cartan subalgebra are conserved quantities. Similar results are obtained in the Jaynes--Cummings model.
We present evidence of metastable rare quantum-fluctuation switching for the driven dissipative Jaynes-Cummings oscillator coupled to a zero-temperature bath in the strongly dispersive regime. We show that single-atom complex amplitude bistability is
We study the analytic structure for the eigenvalues of the one-dimensional Dirac oscillator, by analytically continuing its frequency on the complex plane. A twofold Riemann surface is found, connecting the two states of a pair of particle and antipa
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac
We study multiphoton blockade and photon-induced tunneling effects in the two-photon Jaynes-Cummings model, where a single-mode cavity field and a two-level atom are coupled via a two-photon interaction. We consider both the cavity-field-driving and
We present a propagator formalism to investigate the scattering of photons by a cavity QED system that consists of a single two-level atom dressed by a leaky optical cavity field. We establish a diagrammatic method to construct the propagator analyti