ﻻ يوجد ملخص باللغة العربية
Sigmoids (AKA s-curves or logistic curves) are commonly used in a diverse spectrum of disciplines as models for time-varying phenomena showing initial acceleration followed by slowing: technology diffusion, cumulative cases of an epidemic, population growth towards a carrying capacity, etc. Existing work demonstrates that retrospective fit of data is often impressive. We show that in time series data, the future fit tends to be poor unless the data covers the entire range from before to after the inflection point. We discuss the theoretical reasons for this: the growth data provides little information about the damping term (and vice-versa). As a consequence, forecasting with sigmoids tends to be very unreliable. We suggest some practical approaches to improving the viability of forecasting sigmoid models.
The mayfly nymph breathes under water through an oscillating array of wing-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly
The detection of GeV $gamma$-ray emission from Galactic novae by $Fermi$-LAT has become routine since 2010, and is generally associated with shocks internal to the nova ejecta. These shocks are also expected to heat plasma to $sim 10^7$ K, resulting
Privacy and nondiscrimination are related but different. We make this observation precise in two ways. First, we show that both privacy and nondiscrimination have t
Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ
The use of emergent constraints to quantify uncertainty for key policy relevant quantities such as Equilibrium Climate Sensitivity (ECS) has become increasingly widespread in recent years. Many researchers, however, claim that emergent constraints ar