ﻻ يوجد ملخص باللغة العربية
The Las Vergnas polynomial is an extension of the Tutte polynomial to cellularly embedded graphs. It was introduced by Michel Las Vergnas in 1978 as special case of his Tutte polynomial of a morphism of matroids. While the general Tutte polynomial of a morphism of matroids has a complete set of deletion-contraction relations, its specialisation to cellularly embedded graphs does not. Here we extend the Las Vergnas polynomial to graphs in pseudo-surfaces. We show that in this setting we can define deletion and contraction for embedded graphs consistently with the deletion and contraction of the underlying matroid perspective, thus yielding a version of the Las Vergnas polynomial with complete recursive definition. This also enables us to obtain a deeper understanding of the relationships among the Las Vergnas polynomial, the Bollobas-Riordan polynomial, and the Krushkal polynomial. We also take this opportunity to extend some of Las Vergnas results on Eulerian circuits from graphs in surfaces of low genus to surfaces of arbitrary genus.
We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can no
We consider two operations on an edge of an embedded graph (or equivalently a ribbon graph): giving a half-twist to the edge and taking the partial dual with respect to the edge. These two operations give rise to an action of S_3^{|E(G)|}, the ribbon
For any positive integer $t$, a emph{$t$-broom} is a graph obtained from $K_{1,t+1}$ by subdividing an edge once. In this paper, we show that, for graphs $G$ without induced $t$-brooms, we have $chi(G) = o(omega(G)^{t+1})$, where $chi(G)$ and $omega(
Let $P(G,lambda)$ denote the number of proper vertex colorings of $G$ with $lambda$ colors. The chromatic polynomial $P(C_n,lambda)$ for the cycle graph $C_n$ is well-known as $$P(C_n,lambda) = (lambda-1)^n+(-1)^n(lambda-1)$$ for all positive integer
A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the