ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized splines on graphs with two labels and polynomial splines on cycles

133   0   0.0 ( 0 )
 نشر من قبل Jacob P. Matherne
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A generalized spline on a graph $G$ with edges labeled by ideals in a ring $R$ consists of a vertex-labeling by elements of $R$ so that the labels on adjacent vertices $u, v$ differ by an element of the ideal associated to the edge $uv$. We study the $R$-module of generalized splines and produce minimum generating sets for several families of graphs and edge-labelings: $1)$ for all graphs when the edge-labelings consist of at most two finitely-generated ideals, and $2)$ for cycles when the edge-labelings consist of principal ideals generated by elements of the form $(ax+by)^2$ in the polynomial ring $mathbb{C}[x,y]$. We obtain the generators using a constructive algorithm that is suitable for computer implementation and give several applications, including contextualizing several results in classical (analytic) splines.



قيم البحث

اقرأ أيضاً

We introduce intrinsic interpolatory bases for data structured on graphs and derive properties of those bases. Polyharmonic Lagrange functions are shown to satisfy exponential decay away from their centers. The decay depends on the density of the zer os of the Lagrange function, showing that they scale with the density of the data. These results indicate that Lagrange-type bases are ideal building blocks for analyzing data on graphs, and we illustrate their use in kernel-based machine learning applications.
We study {em generalized graph splines,} introduced by Gilbert, Viel, and the last author. For a large class of rings, we characterize the graphs that only admit constant splines. To do this, we prove that if a graph has a particular type of cutset ( e.g., a bridge), then the space of splines naturally decomposes as a certain direct sum of submodules. As an application, we use these results to describe splines on a triangulation studied by Zhou and Lai, but over a different ring than they used.
In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients. The optimal coarse basis can be derived automatically by the ra ndomization of the original PDEs with a proper prior distribution and the conditional expectation given partial information on edge or derivative measurements. We prove the (quasi)-optimal localization and approximation properties of the obtained bases, and justify the theoretical results with numerical experiments.
Differentiable real function reproducing primes up to a given number and having a differentiable inverse function is constructed. This inverse function is compared with the Riemann-Von Mangoldt exact expression for the number of primes not exceeding a given value. Software for computation of the direct and inverse functions and their derivatives is developed. Examples of approximate solution of Diophantine equations on the primes are given.
Given a graph whose edges are labeled by ideals in a ring, a generalized spline is a labeling of each vertex by a ring element so that adjacent vertices differ by an element of the ideal associated to the edge. We study splines over the ring Z/mZ. Pr evious work considered splines over domains, in which very different phenomena occur. For instance when the ring is the integers, the elements of bases for spline modules are indexed by the vertices of the graph. However we prove that over Z/mZ spline modules can essentially have any rank between 1 and n. Using the classification of finite Z-modules, we begin the work of classifying splines over Z/mZ and produce minimum generating sets for splines on cycles over Z/mZ. We close with many open questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا