ﻻ يوجد ملخص باللغة العربية
Let $P(G,lambda)$ denote the number of proper vertex colorings of $G$ with $lambda$ colors. The chromatic polynomial $P(C_n,lambda)$ for the cycle graph $C_n$ is well-known as $$P(C_n,lambda) = (lambda-1)^n+(-1)^n(lambda-1)$$ for all positive integers $nge 1$. Also its inductive proof is widely well-known by the emph{deletion-contraction recurrence}. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph $C_n$.
Let G be a combinatorial graph with vertices V and edges E. A proper coloring of G is an assignment of colors to the vertices such that no edge connects two vertices of the same color. These are the colorings considered in the famous Four Color Theor
We consider proper colorings of planar graphs embedded in the annulus, such that vertices on one rim can take Q_s colors, while all remaining vertices can take Q colors. The corresponding chromatic polynomial is related to the partition function of a
The concept of graceful labels was proposed by Rosa, scholars began to study graceful labels of various graphs and obtained relevant results.Let the graph is a bipartite graceful graph, we have proved some graphs are graceful labeling in this paper.
This paper proves that there does not exist a polynomial-time algorithm to the the subset sum problem. As this problem is in NP, the result implies that the class P of problems admitting polynomial-time algorithms does not equal the class NP of probl
The theory of colorful graphs can be developed by working in Galois field modulo (p), p > 2 and a prime number. The paper proposes a program of possible conversion of graph theory into a pleasant colorful appearance. We propose to paint the usual bla