ﻻ يوجد ملخص باللغة العربية
For any positive integer $t$, a emph{$t$-broom} is a graph obtained from $K_{1,t+1}$ by subdividing an edge once. In this paper, we show that, for graphs $G$ without induced $t$-brooms, we have $chi(G) = o(omega(G)^{t+1})$, where $chi(G)$ and $omega(G)$ are the chromatic number and clique number of $G$, respectively. When $t=2$, this answers a question of Schiermeyer and Randerath. Moreover, for $t=2$, we strengthen the bound on $chi(G)$ to $7.5omega(G)^2$, confirming a conjecture of Sivaraman. For $tgeq 3$ and {$t$-broom, $K_{t,t}$}-free graphs, we improve the bound to $o(omega^{t-1+frac{2}{t+1}})$.
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows tha
Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices and $K_t$ be the complete graph on $t$ vertices. The diamond is the graph obtaine
By using the Szemeredi Regularity Lemma, Alon and Sudakov recently extended the classical Andrasfai-Erd~os-Sos theorem to cover general graphs. We prove, without using the Regularity Lemma, that the following stronger statement is true. Given any (r-
As usual, $P_n$ ($n geq 1$) denotes the path on $n$ vertices, and $C_n$ ($n geq 3$) denotes the cycle on $n$ vertices. For a family $mathcal{H}$ of graphs, we say that a graph $G$ is $mathcal{H}$-free if no induced subgraph of $G$ is isomorphic to an
We consider the Ihara zeta function $zeta(u,X//G)$ and Artin-Ihara $L$-function of the quotient graph of groups $X//G$, where $G$ is a group acting on a finite graph $X$ with trivial edge stabilizers. We determine the relationship between the primes