ﻻ يوجد ملخص باللغة العربية
We show that the Laplace-Beltrami equation $square_6 a =j$ in $(setR^6,eta)$, $eta := mathrm{diag}(+----+)$, leads under very moderate assumptions to both the Maxwell equations and the conformal Eastwood-Singer gauge condition on conformally flat spaces including the spaces with a Robertson-Walker metric. This result is obtained through a geometric formalism which gives, as byproduct, simplified calculations. In particular, we build an atlas for all the conformally flat spaces considered which allows us to fully exploit the Weyl rescalling to Minkowski space.
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions mad
In a recent paper [arXiv:1206.4916] by T. Padmanabhan, it was argued that our universe provides an ideal setup to stress the issue that cosmic space is emergent as cosmic time progresses and that the expansion of the universe is due to the difference
It is shown that only the maximally-symmetric spacetimes can be expressed in both the Robertson-Walker form and in static form - there are no other static forms of the Robertson-Walker spacetimes. All possible static forms of the metric of the maxima
By use of the gauge-invariant variables proposed by Kodama and Ishibashi, we obtain the most general perturbation equations in the $(m+n)$-dimensional spacetime with a warped product metric. These equations do not depend on the spectral expansions of
The semi classical cosmology approximation for a Friedman Robertson Walker geometry coupled to a field is considered. A power series of the field with coefficients that depend on the radius of the geometry is proposed, and the equations for the coefficients are solved.