Four-dimensional random geometries can be generated by statistical models with rank-4 tensors as random variables. These are dual to discrete building blocks of random geometries. We discover a potential candidate for a continuum limit in such a model by employing background-independent coarse-graining techniques where the tensor size serves as a pre-geometric notion of scale. A fixed point candidate which features two relevant directions is found. The possible relevance of this result in view of universal results for quantum gravity and a potential connection to the asymptotic-safety program is discussed.
A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underl
ying the use of the number of degrees of freedom as a scale for a Renormalization Group flow. We focus on tensor models, for which we explain how the tensor size serves as the scale for a background-independent coarse-graining flow. This flow provides a new probe of a universal continuum limit in tensor models. We review the development and setup of this tool and summarize results in the 2- and 3-dimensional case. Moreover, we provide a step-by-step guide to the practical implementation of these ideas and tools by deriving the flow of couplings in a rank-4-tensor model. We discuss the phenomenon of dimensional reduction in these models and find tentative first hints for an interacting fixed point with potential relevance for the continuum limit in four-dimensional quantum gravity.
The Hamilton-Jacobi analysis of three dimensional gravity defined in terms of Ashtekar-like variables is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transf
ormations of the theory are found. We find from integrability conditions on the Hamilton-Jacobi Hamiltonians that the theory is reduced to a $BF$ field theory defined only in terms of self-dual (or anti-self-dual) variables; we identify the dynamical variables and the counting of physical degrees of freedom is performed. In addition, we compare our results with those reported by using the canonical formalism.
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions mad
e, this conformally invariant wave operator is unique. The corresponding conformally invariant wave equation can be obtained from a Lagrangian which is explicitly given. We discuss how our result compares to previous works, in particular we hope to clarify the situation between conflicting results.
Recent studies have presented the interpretation of thermodynamic enthalpy for the mass of BTZ black holes and the corresponding Smarr formula. All these are made in the background of three-dimensional (3D) general relativity. In this paper, we exten
d such interpretation into general 3D gravity models. It is found that the direct extension is unfeasible and some extra conditions are required to preserve both the Smarr formula and the first law of black hole thermodynamics. Thus, BTZ black hole thermodynamics enforces some constraints for general 3D gravity models, and these constraints are consistent with all previous discussions.
Within the context of the Ashtekar variables, the Hamiltonian constraint of four-dimensional pure General Relativity with cosmological constant, $Lambda$, is reexpressed as an affine algebra with the commutator of the imaginary part of the Chern-Simo
ns functional, $Q$, and the positive-definite volume element. This demonstrates that the affine algebra quantization program of Klauder can indeed be applicable to the full Lorentzian signature theory of quantum gravity with non-vanishing cosmological constant; and it facilitates the construction of solutions to all of the constraints. Unitary, irreducible representations of the affine group exhibit a natural Hilbert space structure, and coherent states and other physical states can be generated from a fiducial state. It is also intriguing that formulation of the Hamiltonian constraint or Wheeler-DeWitt equation as an affine algebra requires a non-vanishing cosmological constant; and a fundamental uncertainty relation of the form $frac{Delta{V}}{<{V}>}Delta {Q}geq 2pi Lambda L^2_{Planck}$ (wherein $V$ is the total volume) may apply to all physical states of quantum gravity.
Astrid Eichhorn
,Johannes Lumma
,Antonio D. Pereira
.
(2019)
.
"Universal critical behavior in tensor models for four-dimensional quantum gravity"
.
Astrid Eichhorn
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا