ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational formulas and cocycle solutions for directed polymer and percolation models

114   0   0.0 ( 0 )
 نشر من قبل Firas Rassoul-Agha
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss variational formulas for the limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arbitrary dimension, steps of the admissible paths can be general, the environment process is ergodic under shifts, and the potential accumulated along a path can depend on the environment and the next step of the path. The variational formulas come in two types: one minimizes over gradient-like cocycles, and another one maximizes over invariant measures on the space of environments and paths. Minimizing cocycles can be obtained from Busemann functions when these can be proved to exist. The results are illustrated through 1+1 dimensional exactly solvable examples, periodic examples, and polymers in weak disorder.



قيم البحث

اقرأ أيضاً

In this paper, we consider four integrable models of directed polymers for which the free energy is known to exhibit KPZ fluctuations. A common framework for the analysis of these models was introduced in our recent work on the OConnell-Yor polymer. We derive estimates for the central moments of the partition function, of any order, on the near-optimal scale $N^{1/3+epsilon}$, using an iterative method. Among the innovations exploiting the invariant structure, we develop formulas for correlations between functions of the free energy and the boundary weights that replace the Gaussian integration by parts appearing in the analysis of the OConnell-Yor case.
We prove that the free energy of directed polymer in Bernoulli environment converges to the growth rate for the number of open paths in super-critical oriented percolation as the temperature tends to zero. Our proof is based on rate of convergence re sults which hold uniformly in the temperature. We also prove that the convergence rate is locally uniform in the percolation parameter inside the super-critical phase, which implies that the growth rate depends continuously on the percolation parameter.
174 - Deepak Dhar 2017
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode -resistor-insulator percolation problem in two dimensions, and relation of the directed percolation to undirected first passage percolation problem are described. Equivalence of the $d$-dimensional directed animals problem to $(d-1)$-dimensional Yang-Lee edge-singularity problem is established. Self-organized critical formulation of the percolation problem, which does not involve any fine-tuning of coupling constants to get critical behavior is briefly discussed.
95 - Nicos Georgiou 2012
We present results about large deviations and laws of large numbers for various polymer related quantities. In a completely general setting and strictly positive temperature, we present results about large deviations for directed polymers in random environment. We prove quenched large deviations (and compute the rate functions explicitly) for the exit point of the polymer chain and the polymer chain itself. We also prove existence of the upper tail large deviation rate function for the logarithm of the partition function. In the case where the environment weights have certain log-gamma distributions the computations are tractable and allow us to compute the rate function explicitly. At zero temperature, the polymer model is now called a last passage model. With a particular choice of random weights, the last passage model has an equivalent representation as a particle system called Totally Asymmetric Simple Exclusion Process (TASEP). We prove a hydrodynamic limit for the macroscopic particle density and current for TASEP with spatially inhomogeneous jump rates given by a speed function that may admit discontinuities. The limiting density profiles are described with a variational formula. This formula enables us to compute explicit density profiles even though we have no information about the invariant distributions of the process. In the case of a two-phase flux for which a suitable p.d.e. theory has been developed we also observe that the limit profiles are entropy solutions of the corresponding scalar conservation law with a discontinuous speed function.
We study variants of one-dimensional q-color voter models in discrete time. In addition to the usual voter model transitions in which a color is chosen from the left or right neighbor of a site there are two types of noisy transitions. One is bulk nu cleation where a new random color is chosen. The other is boundary nucleation where a random color is chosen only if the two neighbors have distinct colors. We prove under a variety of conditions on q and the magnitudes of the two noise parameters that the system is ergodic, i.e., there is convergence to a unique invariant distribution. The methods are percolation-based using the graphical structure of the model which consists of coalescing random walks combined with branching (boundary nucleation) and dying (bulk nucleation).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا