ﻻ يوجد ملخص باللغة العربية
We present results about large deviations and laws of large numbers for various polymer related quantities. In a completely general setting and strictly positive temperature, we present results about large deviations for directed polymers in random environment. We prove quenched large deviations (and compute the rate functions explicitly) for the exit point of the polymer chain and the polymer chain itself. We also prove existence of the upper tail large deviation rate function for the logarithm of the partition function. In the case where the environment weights have certain log-gamma distributions the computations are tractable and allow us to compute the rate function explicitly. At zero temperature, the polymer model is now called a last passage model. With a particular choice of random weights, the last passage model has an equivalent representation as a particle system called Totally Asymmetric Simple Exclusion Process (TASEP). We prove a hydrodynamic limit for the macroscopic particle density and current for TASEP with spatially inhomogeneous jump rates given by a speed function that may admit discontinuities. The limiting density profiles are described with a variational formula. This formula enables us to compute explicit density profiles even though we have no information about the invariant distributions of the process. In the case of a two-phase flux for which a suitable p.d.e. theory has been developed we also observe that the limit profiles are entropy solutions of the corresponding scalar conservation law with a discontinuous speed function.
We study a continuum model of directed polymer in random environment. The law of the polymer is defined as the Brownian motion conditioned to survive among space-time Poissonian disasters. This model is well-studied in the positive temperature regime
We prove that the free energy of directed polymer in Bernoulli environment converges to the growth rate for the number of open paths in super-critical oriented percolation as the temperature tends to zero. Our proof is based on rate of convergence re
In this paper, we consider four integrable models of directed polymers for which the free energy is known to exhibit KPZ fluctuations. A common framework for the analysis of these models was introduced in our recent work on the OConnell-Yor polymer.
We discuss variational formulas for the limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arb
We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of +1 or -1 to each site in ${bf Z}^2$, is the zero-temperature limit