ﻻ يوجد ملخص باللغة العربية
We prove that the free energy of directed polymer in Bernoulli environment converges to the growth rate for the number of open paths in super-critical oriented percolation as the temperature tends to zero. Our proof is based on rate of convergence results which hold uniformly in the temperature. We also prove that the convergence rate is locally uniform in the percolation parameter inside the super-critical phase, which implies that the growth rate depends continuously on the percolation parameter.
We study a continuum model of directed polymer in random environment. The law of the polymer is defined as the Brownian motion conditioned to survive among space-time Poissonian disasters. This model is well-studied in the positive temperature regime
We present results about large deviations and laws of large numbers for various polymer related quantities. In a completely general setting and strictly positive temperature, we present results about large deviations for directed polymers in random
We discuss variational formulas for the limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arb
We consider an inhomogeneous oriented percolation model introduced by de Lima, Rolla and Valesin. In this model, the underlying graph is an oriented rooted tree in which each vertex points to each of its $d$ children with `short edges, and in additio
In independent bond percolation on $mathbb{Z}^d$ with parameter $p$, if one removes the vertices of the infinite cluster (and incident edges), for which values of $p$ does the remaining graph contain an infinite cluster? Grimmett-Holroyd-Kozma used t