ﻻ يوجد ملخص باللغة العربية
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode-resistor-insulator percolation problem in two dimensions, and relation of the directed percolation to undirected first passage percolation problem are described. Equivalence of the $d$-dimensional directed animals problem to $(d-1)$-dimensional Yang-Lee edge-singularity problem is established. Self-organized critical formulation of the percolation problem, which does not involve any fine-tuning of coupling constants to get critical behavior is briefly discussed.
We study a hierarchy of directed percolation (DP) processes for particle species A, B, ..., unidirectionally coupled via the reactions A -> B, ... When the DP critical points at all levels coincide, multicritical behavior emerges, with density expone
We study directed rigidity percolation (equivalent to directed bootstrap percolation) on three different lattices: square, triangular, and augmented triangular. The first two of these display a first-order transition at p=1, while the augmented trian
Conserved directed-percolation (C-DP) and the depinning transition of a disordered elastic interface belong to the same universality class as has been proven very recently by Le Doussal and Wiese [Phys. Rev. Lett.~textbf{114}, 110601 (2015)] through
We study critical spreading in a surface-modified directed percolation model in which the left- and right-most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an edge, the critical exponents sw
A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes fr