ﻻ يوجد ملخص باللغة العربية
We performed detailed chemical abundance analysis of the extremely metal-poor ([Ar/H]-2) halo planetary nebula H4-1 based on the multi-wavelength spectra from Subaru/HDS, GALEX, SDSS, and Spitzer/IRS and determined the abundances of 10 elements. The C and O abundances were derived from collisionally excited lines (CELs) and are almost consistent with abundances from recombination lines (RLs). We demonstrated that the large discrepancy in the C abundance between CEL and RL in H4-1 can be solved using the temperature fluctuation model. We reported the first detection of the [Xe III]5846 A line in H4-1 and determination of its elemental abundance ([Xe/H]>+0.48). H4-1 is the most Xe-rich PN among the Xe-detected PNe. The observed abundances are close to the theoretical prediction by a ~2.0 Msun single star model with initially r-process element rich ([r/Fe]=+2.0 dex). The observed Xe abundance would be a product of the r-process in primordial SNe. The [C/O]-[Ba/(Eu or Xe)] diagram suggests that the progenitor of H4-1 shares the evolution with two types of carbon-enhanced metal-poor stars (CEMP), CEMP-r/s and CEMP-no stars. The progenitor of H4-1 is a presumably binary formed in an r-process rich environment.
We report an investigation of the extremely metal-poor and C-rich planetary nebula (PN) K648 in the globular cluster M15 using the UV to far-IR data obtained using the Subaru, HST, FUSE, Spitzer, and Herschel. We determined the nebular abundances of
We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available
We present a spectral line survey of the proto-planetary nebula AFGL 2688 in the frequency ranges of 71-111 GHz, 157-160 GHz, and 218-267 GHz using the Arizona Radio Observatory 12m telescope and the Heinrich Hertz Submillimeter Telescope. A total of
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra h
We discuss the detection of 14 rovibrational lines of CH$^+$, obtained with the iSHELL spectrograph on NASAs Infrared Telescope Facility (IRTF) on Maunakea. Our observations in the 3.49 - 4.13 $mu$m spectral region, obtained with a 0.375 slit width t