ﻻ يوجد ملخص باللغة العربية
We report an investigation of the extremely metal-poor and C-rich planetary nebula (PN) K648 in the globular cluster M15 using the UV to far-IR data obtained using the Subaru, HST, FUSE, Spitzer, and Herschel. We determined the nebular abundances of ten elements. The enhancement of F ([F/H]=+0.96) is comparable to that of the halo PN BoBn1. The central stellar abundances of seven elements are determined. The stellar C/O ratio is similar to the nebular C/O ratios from recombination line and from collisionally excited line (CEL) within error, and the stellar Ne/O ratio is also close to the nebular CEL Ne/O ratio. We found evidence of carbonaceous dust grains and molecules including Class B 6-9 um and 11.3 um polycyclic aromatic hydrocarbons and the broad 11 um feature. The profiles of these bands are similar to those of the C-rich halo PNe H4-1 and BoBn1. Based on the theoretical model, we determined the physical conditions of the gas and dust and their masses, i.e., 0.048 Msun and 4.95x10^{-7} Msun, respectively. The observed chemical abundances and gas mass are in good agreement with an asymptotic giant branch nucleosynthesis model prediction for stars with an initial 1.25 Msun plus a 2.0x10^{-3} Msun partial mixing zone (PMZ) and stars with an initial mass of 1.5 Msun without a PMZ. The core-mass of the central star is approximately 0.61-0.63 Msun. K648 is therefore likely to have evolved from a progenitor that experienced coalescence or tidal disruption during the early stages of evolution, and became a ~1.25-1.5 Msun blue straggler.
We have performed a comprehensive chemical abundance analysis of the extremely metal-poor ([Ar/H]<-2) halo planetary nebula (PN) BoBn 1 based on IUE archive data, Subaru/HDS spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have detected ov
We performed detailed chemical abundance analysis of the extremely metal-poor ([Ar/H]-2) halo planetary nebula H4-1 based on the multi-wavelength spectra from Subaru/HDS, GALEX, SDSS, and Spitzer/IRS and determined the abundances of 10 elements. The
(Abridged) We present the abundance analysis of 12 PNe ionized by [WC]-type stars and wels obtained from high-resolution spectrophotometric data. Our main aims are to determine the chemical composition of the PNe and to study the behaviour of the abu
While analysing the images of the IPHAS H$alpha$ survey, we noticed that the central star of the candidate planetary nebula IPHASXJ211420.0+434136 (also named Ou5) was clearly variable. This is generally considered as an indication of binarity. To co
We present high spatial resolution ($approx$ 60--90 milliarcseconds) images of the molecular hydrogen emission in the Planetary Nebula (PN) NGC 2346. The data were acquired during the System Verification of the Gemini Multi-Conjugate Adaptive Optics