ترغب بنشر مسار تعليمي؟ اضغط هنا

A Molecular Line Survey of the Carbon-Rich Proto-Planetary Nebula AFGL 2688 in the 3mm and 1.3mm Windows

138   0   0.0 ( 0 )
 نشر من قبل Yong Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a spectral line survey of the proto-planetary nebula AFGL 2688 in the frequency ranges of 71-111 GHz, 157-160 GHz, and 218-267 GHz using the Arizona Radio Observatory 12m telescope and the Heinrich Hertz Submillimeter Telescope. A total of 143 individual spectral features associated with 32 different molecular species and isotopologues were identified. The molecules C3H, CH3CN, H2CO, H2CS, and HCO+ were detected for the first time in this object. By comparing the integrated line strengths of different transitions, we are able to determine the rotation temperatures, column densities, and fractional abundances of the detected molecules. The C, O, and N isotopic ratios in AFGL 2688 are compared with those in IRC+10216 and the Sun, and were found to be consistent with stellar nucleosynthesis theory. Through comparisons of molecular line strengths in asymptotic giant branch stars, proto-planetary nebulae, and planetary nebulae, we discuss the evolution in circumstellar chemistry in the late stages of evolution.



قيم البحث

اقرأ أيضاً

We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available ionization correction factors, to calculate the abundances of Ar, C, Cl, He, N, Ne, and O relative to H. The infrared spectra are used to classify the PNe in two groups depending on whether the observed dust features are representative of oxygen-rich or carbon-rich environments. The sample contains one object from the halo, eight from the bulge, and eleven from the local disc. We compare their chemical abundances with nucleosynthesis model predictions and with the ones obtained in seven Galactic H II regions of the solar neighbourhood. We find evidence of O enrichment (by $sim$ 0.3 dex) in all but one of the PNe with carbon-rich dust (CRD). Our analysis shows that Ar, and especially Cl, are the best metallicity indicators of the progenitors of PNe. There is a tight correlation between the abundances of Ar and Cl in all the objects, in agreement with a lockstep evolution of both elements. The range of metallicities implied by the Cl abundances covers one order of magnitude and we find significant differences in the initial masses and metallicities of the PNe with CRD and oxygen-rich dust (ORD). The PNe with CRD tend to have intermediate masses and low metallicities, whereas most of the PNe with ORD show higher enrichments in N and He, suggesting that they had high-mass progenitors.
113 - Masaaki Otsuka 2013
We performed detailed chemical abundance analysis of the extremely metal-poor ([Ar/H]-2) halo planetary nebula H4-1 based on the multi-wavelength spectra from Subaru/HDS, GALEX, SDSS, and Spitzer/IRS and determined the abundances of 10 elements. The C and O abundances were derived from collisionally excited lines (CELs) and are almost consistent with abundances from recombination lines (RLs). We demonstrated that the large discrepancy in the C abundance between CEL and RL in H4-1 can be solved using the temperature fluctuation model. We reported the first detection of the [Xe III]5846 A line in H4-1 and determination of its elemental abundance ([Xe/H]>+0.48). H4-1 is the most Xe-rich PN among the Xe-detected PNe. The observed abundances are close to the theoretical prediction by a ~2.0 Msun single star model with initially r-process element rich ([r/Fe]=+2.0 dex). The observed Xe abundance would be a product of the r-process in primordial SNe. The [C/O]-[Ba/(Eu or Xe)] diagram suggests that the progenitor of H4-1 shares the evolution with two types of carbon-enhanced metal-poor stars (CEMP), CEMP-r/s and CEMP-no stars. The progenitor of H4-1 is a presumably binary formed in an r-process rich environment.
We have investigated the light variability in a sample of 22 carbon-rich post-AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), based primarily on photometric data from the OGLE survey. All are found to vary. Dominant pe riods are found in eight of them; these periods range from 49 to 157 days, and most of these stars have F spectral types. These eight are found to be similar to the Milky Way Galaxy (MWG) carbon-rich proto-planetary nebulae (PPNs) in several ways: (a) they are in the same period range of ~38 to ~160 days, (b) they have similar spectral types, (c) they are (all but one) redder when fainter, (d) they have multiple periods, closely spaced in time, with a average ratio of secondary to primary period of ~1.0, and as an ensemble, (e) they show a trend of decreasing period with increasing temperature, and (f) they show a trend of decreasing amplitude with decreasing period. However, they possibly differ in that the decreasing trend of period with temperature may be slightly offset from that of the MWG. These eight are classified as PPNs. The other 14 all show evidence of variability on shorter timescales. They are likely hotter PPNs or young planetary nebulae. However, in the MWG the numbers of PPNs peak in the F-G spectral types, while it appears that in the LMC they peak at a hotter B spectral type. One of the periodic ones shows a small, R Coronae Borealis-type light curve drop.
We present a detailed comparative study of the arcs and fragmented ring-like features in the haloes of the planetary nebulae (PNe) NGC 6543, NGC 7009, and NGC 7027 and the spiral pattern around the carbon star AFGL 3068 using high-quality multi-epoch HST images. This comparison allows us to investigate the connection and possible evolution between the regular patterns surrounding AGB stars and the irregular concentric patterns around PNe. The radial proper motion of these features, ~15 km/s, are found to be consistent with the AGB wind and their linear sizes and inter-lapse times (500-1900 yr) also agree with those found around AGB stars, suggesting a common origin. We find evidence using radiative-hydrodynamic simulations that regular patterns produced at the end of the AGB phase become highly distorted by their interactions with the expanding PN and the anisotropic illumination and ionization patterns caused by shadow instabilities. These processes will disrupt the regular (mostly spiral) patterns around AGB stars, plausibly becoming the arcs and fragmented rings observed in the haloes of PNe.
281 - J. H. He , Dinh-V-Trung , S. Kwok 2008
We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and HN13C are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundance difference among the three 13C substituted isotopic isomers of HC3N is reported. Isotopic ratios of C and O are confirmed to be non-solar while those of S and Si to be nearly solar. Column densities have been estimated for 15 molecular species. Modified spectroscopic parameters have been calculated for NaCN, Na13CN, KCN and SiC2. Transition frequencies from the present observations were used to improve the spectroscopic parameters of Si13CC, 29SiC2 and 30SiC2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا