ﻻ يوجد ملخص باللغة العربية
The space- and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behaviour. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wavevector and energy with great detail, allowing theories to be quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on integrability and density matrix renormalization group simulations. The unprecedented quantitative agreement shows that precise descriptions of strongly correlated states at all distance, time and temperature scales are now possible, and highlights the need to apply these novel techniques to other problems in low-dimensional magnetism.
Inelastic neutron-scattering and finite-temperature density matrix renormalization group (DMRG) calculations are used to investigate the spin excitation spectrum of the $S=1/2$ Heisenberg spin chain compound K$_2$CuSO$_4$Cl$_2$ at several temperature
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temper
Using numerical diagonalization techniques, we explore the effect of local and bond disorder on the finite temperature spin and thermal conductivities of the one dimensional anisotropic spin-1/2 Heisenberg model. High-temperature results for local di
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving t
We communicate results on correlation functions for the spin-1/2 Heisenberg-chain in two particularly important cases: (a) for the infinite chain at arbitrary finite temperature $T$, and (b) for finite chains of arbitrary length $L$ in the ground-sta