ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in the S = 1/2 antiferromagnetic-ferromagnetic chain compound BaCu2V2O8 at zero and finite temperature

78   0   0.0 ( 0 )
 نشر من قبل Ekaterina S. Klyushina
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temperatures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu$_2$V$_2$O$_8$ which we show to be an alternating antiferromagnetic-ferromagnetic spin$-1/2$ chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.



قيم البحث

اقرأ أيضاً

We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la w B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
The phase transition in the compound LiVGe2O6 has been proposed as a unique example of a spin-Peierls transition in an S=1 antiferromagnetic chain. We report neutron and x-ray diffraction measurements of LiVGe2O6 above and below the phase transition at T=24 K. No evidence is seen for any structural distortion associated with the transition. The neutron results indicate that the low temperature state is antiferromagnetic, driven by ferromagnetic interchain couplings.
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)$_2$]$cdot$($o$-Py-V) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an $S$ = 1/2 ferromagnetic-antif erromagnetic alternating Heisenberg chain (F-AF AHC). $Ab$ $initio$ molecular orbital (MO) calculations indicate that two dominant interactions $J_{rm{F}}$ and $J_{rm{AF}}$ form the $S=1/2$ F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the $S=1/2$ F-AF AHC through quantum Monte Carlo calculations with $|J_{rm{AF}}/J_{rm{F}}|$ = 0.22. The $ab$ $initio$ MO calculations also indicate a weak AF interchain interaction $J$ and that the coupled F-AF AHCs form a honeycomb lattice. The $J$ dependence of the Haldane gap is calculated, and the actual value of $J$ is determined to be less than 0.01$|J_{rm{F}}|$.
180 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl3. Measurements over a wide range of wave-vector transfers along the c hain confirm that above T_N CsNiCl3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length xi=4.0(2) sites at T=6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multi-particle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multi-particle continuum on the chain wave-vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl3 for T < 12K, possibly caused by multiply-frustrated interchain interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا