ﻻ يوجد ملخص باللغة العربية
We communicate results on correlation functions for the spin-1/2 Heisenberg-chain in two particularly important cases: (a) for the infinite chain at arbitrary finite temperature $T$, and (b) for finite chains of arbitrary length $L$ in the ground-state. In both cases we present explicit formulas expressing the short-range correlators in a range of up to seven lattice sites in terms of a single function $omega$ encoding the dependence of the correlators on $T$ ($L$). These formulas allow us to obtain accurate numerical values for the correlators and derived quantities like the entanglement entropy. By calculating the low $T$ (large $L$) asymptotics of $omega$ we show that the asymptotics of the static correlation functions at any finite distance are $T^2$ ($1/L^2$) terms. We obtain exact and explicit formulas for the coefficients of the leading order terms for up to eight lattice sites.
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artifici
The effect of a single static impurity on the many-body states and on the spin and thermal transport in the one-dimensional anisotropic Heisenberg chain at finite temperatures is studied. Whereas the pure Heisenberg model reveals Poisson level statis
A universal linear-temperature dependence of the uniform magnetic susceptibility has been observed in the nonmagnetic normal state of iron-pnictides. This non-Pauli and non-Curie-Weiss-like paramagnetic behavior cannot be understood within a pure iti
The space- and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behaviour. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wavevector an
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power la