ﻻ يوجد ملخص باللغة العربية
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corresponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.
The basic thermodynamic quantities for a non-interacting scalar field in a periodic potential composed of either a one-dimensional chain of Dirac $delta$-$delta^prime$ functions or a specific potential with extended compact support are calculated. Fi
This work concerns the dynamical two-point spin correlation functions of the transverse Ising quantum chain at finite (non-zero) temperature, in the universal region near the quantum critical point. They are correlation functions of twist fields in t
A general, multi-component Eulerian fluid theory is a set of nonlinear, hyperbolic partial differential equations. However, if the fluid is to be the large-scale description of a short-range many-body system, further constraints arise on the structur
The Casimir force and free energy at low temperatures has been the subject of focus for some time. We calculate the temperature correction to the Casimir-Lifshitz free energy between two parallel plates made of dielectric material possessing a consta
Finding out root patterns of quantum integrable models is an important step to study their physical properties in the thermodynamic limit. Especially for models without $U(1)$ symmetry, their spectra are usually given by inhomogeneous $T-Q$ relations