ترغب بنشر مسار تعليمي؟ اضغط هنا

General Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae

69   0   0.0 ( 0 )
 نشر من قبل Luke Roberts
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.



قيم البحث

اقرأ أيضاً

287 - C. D. Ott 2012
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27-solar-mass progenitor was studied in 2D by B. Mueller et al. (ApJ 761:72, 2012), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t he extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong non-radial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
We present gravitational wave (GW) signal predictions from four 3D multi-group neutrino hydrodynamics simulations of core-collapse supernovae of progenitors with 11.2 Msun, 20 Msun, and 27 Msun. GW emission in the pre-explosion phase strongly depends on whether the post-shock flow is dominated by the standing accretion shock instability (SASI) or convection and differs considerably from 2D models. SASI activity produces a strong signal component below 250 Hz through asymmetric mass motions in the gain layer and a non-resonant coupling to the proto-neutron star (PNS). Both convection- and SASI-dominated models show GW emission above 250 Hz, but with considerably lower amplitudes than in 2D. This is due to a different excitation mechanism for high-frequency l=2 motions in the PNS surface, which are predominantly excited by PNS convection in 3D. Resonant excitation of high-frequency surface g-modes in 3D by mass motions in the gain layer is suppressed compared to 2D because of smaller downflow velocities and a lack of high-frequency variability in the downflows. In the exploding 20 Msun model, shock revival results in enhanced low-frequency emission due to a change of the preferred scale of the convective eddies in the PNS convection zone. Estimates of the expected excess power in two frequency bands suggests that second-generation detectors will only be able to detect very nearby events, but that third-generation detectors could distinguish SASI- and convection-dominated models at distances of ~10 kpc.
We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six dimensional (6D) phase space. Adopting representative snapshots of the post- bounce core from other supernova simulations in three dimensions, we solve the temporal evolutions to stationary states of neutrino distribution functions by our Boltzmann solver. Taking advantage of the multi-angle and multi-energy feature realized by the S$_n$ method in our code, we reveal the genuine characteristics of spatially three dimensional (3D) neutrino transfer such as non-radial fluxes and non-diagonal Eddington tensors. In addition, we assess the ray-by-ray approximation, turning off the lateral-transport terms in our code. We demonstrate that the ray-by-ray approximation tends to propagate fluctuations in thermodynamical states around the neutrino-sphere along each radial ray and overestimate the variations between the neutrino distributions on different radial rays. We find that the difference in the densities and fluxes of neutrinos between the ray-by-ray approximation and the full Boltzmann transport becomes ~20%, which is also the case for the local heating rate, whereas the volume-integrated heating rate in the Boltzmann transport is found to be only slightly larger (~2%) than the counterpart in the ray-by-ray approximation due to cancellation among different rays. These results suggest that we had better assess carefully the possible influences of various approximations in the neutrino transfer employed in the current simulations on supernova dynamics. Detailed information on the angle and energy moments of neutrino distribution functions will be profitable for the future development of numerical methods in neutrino-radiation hydrodynamics.
We present a new general relativistic (GR) code for hydrodynamic supernova simulations with neutrino transport in spherical and azimuthal symmetry (1D/2D). The code is a combination of the CoCoNuT hydro module, which is a Riemann-solver based, high-r esolution shock-capturing method, and the three-flavor, energy-dependent neutrino transport scheme VERTEX. VERTEX integrates the neutrino moment equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the ray-by-ray plus approximation in 2D, assuming the neutrino distribution to be axially symmetric around the radial direction, and thus the neutrino flux to be radial. Our spacetime treatment employs the ADM 3+1 formalism with the conformal flatness condition for the spatial three-metric. This approach is exact in 1D and has been shown to yield very accurate results also for rotational stellar collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number with better accuracy and higher numerical stability. To verify our code, we conduct a series of tests, including a detailed comparison with published 1D results for stellar core collapse. Long-time simulations of proto-neutron star cooling over several seconds both demonstrate the robustness of the new CoCoNuT-VERTEX code and show the approximate treatment of GR effects by means of an effective gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in 1D. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا