ﻻ يوجد ملخص باللغة العربية
We present a double-resonant Raman mode in few-layer graphene, which is able to probe the number of graphene layers reliably. This so-called N mode on the low-frequency side of the G mode results from a double-resonant Stokes/anti-Stokes process combining a LO and a ZO phonon. Simulations of the double-resonant Raman spectra in bilayer graphene show very good agreement with the experiments. The investigation of the out-of-plane ZO phonon for layer number determination is expected to be transferable to other layered materials like boron nitride.
Correct defect quantification in graphene samples is crucial both for fundamental and applied re-search. Raman spectroscopy represents the most widely used tool to identify defects in graphene. However, despite its extreme importance the relation bet
The electronic properties of few-layer graphene grown on the carbon-face of silicon carbide (SiC) are found to be strongly dependent on the number of layers. The carrier mobility is larger in thicker graphene because substrate-related scattering is r
We report on the charge spill-out and work function of epitaxial few-layer graphene on 6H-SiC(0001). Experiments from high-resolution, energy-filtered X-ray photoelectron emission microscopy (XPEEM) are combined with ab initio Density Functional Theo
Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy
Phosphorene has been rediscovered recently, establishing itself as one of the most promising two dimensional group-V elemental monolayers with direct band gap, high carrier mobility, and anisotropic electronic properties. In this letter, the buckling