ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer Number Determination and Thickness-dependent Properties of Graphene Grown on SiC

132   0   0.0 ( 0 )
 نشر من قبل Wenjuan Zhu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic properties of few-layer graphene grown on the carbon-face of silicon carbide (SiC) are found to be strongly dependent on the number of layers. The carrier mobility is larger in thicker graphene because substrate-related scattering is reduced in the higher layers. The carrier density dependence of the mobility is qualitatively different in thin and thick graphene, with the transition occurring at about 2 layers. The mobility increases with carrier density in thick graphene, similar to multi-layer graphene exfoliated from natural graphite, suggesting that the individual layers are still electrically coupled in spite of reports recording non-Bernal stacking order in C-face grown graphene. The Hall coefficient peak value is reduced in thick graphene due to the increased density of states. A reliable and rapid characterization tool for the layer number is therefore highly desirable. To date, AFM height determination and Raman scattering are typically used since the optical contrast of graphene on SiC is weak. However, both methods suffer from low throughput. We show that the scanning electron microscopy (SEM) contrast can give similar results with much higher throughput.



قيم البحث

اقرأ أيضاً

The results of micro-Raman scattering measurements performed on three different ``graphitic materials: micro-structured disks of highly oriented pyrolytic graphite, graphene multi-layers thermally decomposed from carbon terminated surface of 4H-SiC a nd an exfoliated graphene monolayer are presented. Despite its multi-layer character, most parts of the surface of the graphitized SiC substrates shows a single-component, Lorentzian shape, double resonance Raman feature in striking similarity to the case of a single graphene monolayer. Our observation suggests a very weak electronic coupling between graphitic layers on the SiC surface, which therefore can be considered to be graphene multi-layers with a simple (Dirac-like) band structure.
327 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di scussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
A self-consistent scheme for the calculations of the interacting groundstate and the near bandgap optical spectra of mono- and multilayer transition-metal-dichalcogenide systems is presented. The approach combines a dielectric model for the Coulomb i nteraction potential in a multilayer environment, gap equations for the renormalized groundstate, and the Dirac-Wannier-equation to determine the excitonic properties. To account for the extension of the individual monolayers perpendicular to their basic plane, an effective thickness parameter in the Coulomb interaction potential is introduced. Numerical evaluations for the example of MoS$_2$ show that the resulting finite size effects lead to significant modifications in the optical spectra, reproducing the experimentally observed non hydrogenic features of the excitonic resonance series. Applying the theory for multi-layer configurations, a consistent description of the near bandgap optical properties is obtained all the way from monolayer to bulk. In addition to the well-known in-plane excitons, also interlayer excitons occur in multilayer systems suggesting a reinterpretation of experimental results obtained for bulk material.
91 - Hao Lee , S. Deshmukh , Jing Wen 2019
Transition metal dichalcogenides (TMDs) are layered semiconducting van der Waal crystals and promising materials for a wide range of electronic and optoelectronic devices. Realizing practical electrical and optoelectronic device applications requires a connection between a metal junction and a TMD semiconductor. Hence, a complete understanding of electronic band alignments and the potential barrier heights governing the transport through a metal-TMD-metal junction is critical. But, there is a knowledge gap; it is not clear how the energy bands of a TMD align while in contact with a metal as a function of the number of layers. In pursuit of removing this knowledge gap, we have performed conductive atomic force microscopy (CAFM) of few layered (1-5) MoS2 immobilized on ultra-flat conducting Au surfaces (root mean square (RMS) surface roughness <0.2 nm) and indium tin oxide (ITO) substrate (RMS surface roughness <0.7 nm) forming a vertical metal (conductive-AFM tip)-semiconductor-metal device. We have observed that the current increases as the number of layers increases up to 5 layers. By applying Fowler-Nordheim tunneling theory, we have determined the barrier heights for different layers and observed that the barrier height decreases as the number of layers increases. Using density functional theory (DFT) calculation, we successfully demonstrated that the barrier height decreases as the layer number increases. By illuminating the TMDs on a transparent ultra-flat conducting ITO substrate, we observed a reduction in current when compared to the current measured in the dark, hence demonstrating negative photoconductivity. Our study provides a fundamental understanding of the local electronic and optoelectronic behaviors of TMD-metal junction, and may pave an avenue toward developing nanoscale electronic devices with tailored layer-dependent transport properties.
We investigate the magnetotransport properties of quasi-free standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H$_2$ intercalation. At the charge neutrality point the longitudinal resistance s hows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors ($ u$) multiple of four ($ u=4, 8, 12$), as well as broken valley symmetry QHSs at $ u=0$ and $ u=6$. These results unambiguously show that the quasi-free standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا