ﻻ يوجد ملخص باللغة العربية
Phosphorene has been rediscovered recently, establishing itself as one of the most promising two dimensional group-V elemental monolayers with direct band gap, high carrier mobility, and anisotropic electronic properties. In this letter, the buckling and its effect on the electronic properties in phosphorene are investigated by using molecular dynamics simulations and complemented by density functional theory calculations. We find that phosphorene shows superior out-of-plane structural flexibility along the armchair direction, which allows the formation of buckling with large curvatures, while the buckling along the zigzag direction will break its structure integrity at large curvatures. The semiconducting and direct band gap nature are retained with buckling along the armchair direction; the band gap decreases and transforms to an indirect band gap with buckling along the zigzag direction. The structural flexibility and electronic robustness along the armchair direction facilitate the fabrication of devices with complex shapes, such as folded phosphorene and phosphorene nano-scrolls, thereby offering new possibilities for the application of phosphorene in flexible electronics and optoelectronics.
We systematically explore chemical functionalization of monolayer black phosphorene via chemisorption of oxygen and fluorine atoms. Using the cluster expansion technique, with vary- ing concentration of the adsorbate, we determine the ground states c
We present a double-resonant Raman mode in few-layer graphene, which is able to probe the number of graphene layers reliably. This so-called N mode on the low-frequency side of the G mode results from a double-resonant Stokes/anti-Stokes process comb
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of sustained research interest due to their extraordinary electronic and optical properties. They also exhibit a wide range of structural phases because of the differ
Structural, electronic and magnetic properties of bulk ilmenite CoTiO$_3$ are analyzed in the framework of Density Functional Theory (DFT), using the Generalized Gradient Approximation (GGA) and Hubbard-corrected approaches. We find that the G-type a
Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of opt