ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene

142   0   0.0 ( 0 )
 نشر من قبل Martin Kalbac
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Correct defect quantification in graphene samples is crucial both for fundamental and applied re-search. Raman spectroscopy represents the most widely used tool to identify defects in graphene. However, despite its extreme importance the relation between the Raman features and the amount of defects in multilayered graphene samples has not been experimentally verified. In this study we intentionally created defects in single layer graphene, turbostratic bilayer graphene and Bernal stacked bilayer graphene by oxygen plasma. By employing isotopic labelling, our study reveals substantial differences of the effects of plasma treatment on individual layers in bilayer graphene with different stacking orders. In addition Raman spectroscopy evidences scattering of phonons in the bottom layer by defects in the top layer for Bernal-stacked samples, which can in general lead to overestimation of the number of defects by as much as a factor of two.



قيم البحث

اقرأ أيضاً

We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi on. We observe a new catalytic channeling behavior, whereby etched cuts do not intersect, resulting in continuously connected geometries. Raman spectroscopy and electronic measurements show that the quality of the graphene is resilient under the etching conditions, indicating that this method may serve as a powerful technique to produce graphene nanocircuits with well-defined crystallographic edges.
We carried out micro-Raman spectroscopy of graphene layers over the temperature range from approximately 80 K to 370 K. The number of layers was independently confirmed by the quantum Hall measurements and atomic force microscopy. The measured values of the temperature coefficients for the G and 2D-band frequencies of the single-layer graphene are -0.016 1/(cm K) and -0.034 1/(cm K), respectively. The G peak temperature coefficient of the bi-layer graphene and bulk graphite are -0.015 1/(cm K) and -0.011 1/(cm K), respectively.
When a crystal becomes thinner and thinner to the atomic level, peculiar phenomena discretely depending on its layer-numbers (n) start to appear. The symmetry and wave functions strongly reflect the layer-numbers and stacking order, which brings us a potential of realizing new properties and functions that are unexpected in either bulk or simple monolayer. Multilayer WTe2 is one such example exhibiting unique ferroelectricity and non-linear transport properties related to the antiphase stacking and Berry-curvature dipole. Here we investigate the electronic band dispersions of multilayer WTe2 (2-5 layers), by performing laser-based micro-focused angle-resolved photoelectron spectroscopy on exfoliated-flakes that are strictly sorted by n and encapsulated by graphene. We clearly observed the insulator-semimetal transition occurring between 2- and 3-layers, as well as the 30-70 meV spin-splitting of valence bands manifesting in even n as a signature of stronger structural asymmetry. Our result fully demonstrates the possibility of the large energy-scale band and spin manipulation through the finite n stacking procedure.
The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.
The intrinsic magnetic layered topological insulator MnBi2Te4 with nontrivial topological properties and magnetic order has become a promising system for exploring exotic quantum phenomena such as quantum anomalous Hall effect. However, the layer-dep endent magnetism of MnBi2Te4, which is fundamental and crucial for further exploration of quantum phenomena in this system, remains elusive. Here, we use polar reflective magnetic circular dichroism spectroscopy, combined with theoretical calculations, to obtain an in-depth understanding of the layer-dependent magnetic properties in MnBi2Te4. The magnetic behavior of MnBi2Te4 exhibits evident odd-even layer-number effect, i.e. the oscillations of the coercivity of the hysteresis loop (at {mu}0Hc) and the spin-flop transition (at {mu}0H1), concerning the Zeeman energy and magnetic anisotropy energy. In the even-number septuple layers, an anomalous magnetic hysteresis loop is observed, which is attributed to the thickness-independent surface-related magnetization. Through the linear-chain model, we can clarify the odd-even effect of the spin-flop field and determine the evolution of magnetic states under the external magnetic field. The mean-field method also allows us to trace the experimentally observed magnetic phase diagrams to the magnetic fields, layer numbers and especially, temperature. Overall, by harnessing the unusual layer-dependent magnetic properties, our work paves the way for further study of quantum properties of MnBi2Te4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا