ﻻ يوجد ملخص باللغة العربية
As proved by Regnier and Rosler, the number of key comparisons required by the randomized sorting algorithm QuickSort to sort a list of $n$ distinct items (keys) satisfies a global distributional limit theorem. Fill and Janson proved results about the limiting distribution and the rate of convergence, and used these to prove a result part way towards a corresponding local limit theorem. In this paper we use a multi-round smoothing technique to prove the full local limit theorem.
Using a recursive approach, we obtain a simple exact expression for the L^2-distance from the limit in Regniers (1989) classical limit theorem for the number of key comparisons required by QuickSort. A previous study by Fill and Janson (2002) using a
We define a multi-group version of the mean-field spin model, also called Curie-Weiss model. It is known that, in the high temperature regime of this model, a central limit theorem holds for the vector of suitably scaled group magnetisations, that is
The Robbins-Monro algorithm is a recursive, simulation-based stochastic procedure to approximate the zeros of a function that can be written as an expectation. It is known that under some technical assumptions, a Gaussian convergence can be establish
We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a Gaussian random velocity field that is white in time and smooth in space. We show that conditional on the velocity field, the quenched density of the p
Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represente