ﻻ يوجد ملخص باللغة العربية
I present the discovery of Balmer-line absorption from H alpha to H9 in iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS~J172341.10+555340.5 by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru telescope. The redshift of the Balmer-line absorption troughs is 2.0530 +/- 0.0003, and it is blueshifted by 5370 km s^{-1} from the Balmer emission lines. It is more than $4000$ km s^{-1} blueshifted from the previously known UV absorption lines. I detect relatively strong (EW_rest=20A) [O III] emission lines which are similar to those found in other broad absorption line quasars with Balmer-line absorption. I derived a column density of neutral hydrogen of 5.2x10^{17} cm^{-2} by using the curve of growth and taking account of Ly alpha trapping. I searched for UV absorption lines which have the same redshift with Balmer-line absorption. I found Al II} and Fe III absorption lines at z=2.053 which correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure,
We present results of our time variability studies of Mg II and Al III absorption lines in a sample of 22 Low Ionization Broad Absorption Line QSOs (LoBAL QSOs) at 0.2 <= zem <= 2.1 using the 2m telescope at IUCAA Girawali Observatory over a time-sca
On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range, we analyze the spectral differenc
We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to