ﻻ يوجد ملخص باللغة العربية
We present results of our time variability studies of Mg II and Al III absorption lines in a sample of 22 Low Ionization Broad Absorption Line QSOs (LoBAL QSOs) at 0.2 <= zem <= 2.1 using the 2m telescope at IUCAA Girawali Observatory over a time-scale of 10 days to 7.69 years in the QSOs rest frame. Spectra are analysed in conjunction with photometric light curves from Catalina Real-Time Transient Survey. Long time-scale (i.e >= 1 year) absorption line variability is seen in 8 cases (36% systems) while only 4 of them (i.e 18% systems) show variability over short time-scales (i.e < 1 year). We notice a tendency of highly variable LoBAL QSOs to have high ejection velocity, low equivalent width and low redshift. The detection rate of variability in LoBAL QSOs showing Fe fine-structure lines (FeLoBAL QSOs) is less than that seen in non-Fe LoBAL QSOs. Absorption line variability is more frequently detected in QSOs having continuum dominated by Fe emission lines compared to rest of the QSOs. Confirming these trends with a bigger sample will give vital clues for understanding the physical distinction between different BAL QSO sub-classes. We correlate the absorption line variability with various parameters derived from continuum light curves and find no clear correlation between continuum flux and absorption line variabilities. However, sources with large absorption line variability also show large variability in their light curves. We also see appearance/disappearance of absorption components in 2 cases and clear indications for profile variations in 4 cases. The observed variability can be best explained by a combination of process driven by continuum variations and clouds transiting across the line of sight.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure,
Broad absorption lines (BALs) in quasar spectra indicate high-velocity outflows that may be present in all quasars and could be an important contributor to feedback to their host galaxies. Variability studies of BALs help illuminate the structure, ev
Broad absorption lines (BALs) in quasar spectra are prominent signatures of high-velocity outflows, which might be present in all quasars and could be a major contributor to feedback to galaxy evolution. Studying the variability in these BALs allows
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. The variability of BALs can help us understand the structure, evolution, and
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five year