ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectropolarimetry of Radio-Selected Broad Absorption Line Quasars

149   0   0.0 ( 0 )
 نشر من قبل Michael DiPompeo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) show large continuum polarization (2-10%) usually rising toward short wavelengths, emission lines are typically less polarized than the continuum, and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.



قيم البحث

اقرأ أيضاً

Broad absorption line quasars (commonly termed BALQSOs) contain the most dramatic examples of AGN-driven winds. The high absorbing columns in these winds, ~10^24 cm^-2, ensure that BALQSOs are generally X-ray faint. This high X-ray absorption means t hat almost all BALQSOs have been discovered through optical surveys, and so what little we know about their X-ray properties is derived from very bright optically-selected sources. A small number of X-ray selected BALQSOs (XBALQSOs) have, however, recently been found in deep X-ray survey fields. In this paper we investigate the X-ray and rest-frame UV properties of five XBALQSOs for which we have obtained XMM-Newton EPIC X-ray spectra and deep optical imaging and spectroscopy. We find that, although the XBALQSOs have an alpha_ox steeper by ~0.5 than normal QSOs, their median alpha_ox is nevertheless flatter by 0.30 than that of a comparable sample of optically selected BALQSOs (OBALQSOs). We rule out the possibility that the higher X-ray to optical flux ratio is due to intrinsic optical extinction. We find that the amount of X-ray and UV absorption due to the wind in XBALQSOs is similar, or perhaps greater than, the corresponding wind absorption in OBALQSOs, so the flatter alpha_ox cannot be a result of weaker wind absorption. We conclude that these XBALQSOs have intrinsically higher X-ray to optical flux ratios than the OBALQSO sample with which we compare them.
If broad absorption line (BAL) quasars represent a high covering fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to no rmal quasars. Some previous studies have suggested that this is not the case. We perform the first analysis of the IR properties of radio-loud BAL quasars, using IR data from WISE and optical (rest-frame ultraviolet) data from SDSS, and compare the BAL quasar sample with a well-matched sample of unabsorbed quasars. We find a statistically significant excess in the mid- to near-infrared luminosities of BAL quasars, particularly at rest-frame wavelengths of 1.5 and 4 microns. Our sample was previously used to show that BALs are observed along many lines of sight towards quasars, but with an overabundance of more edge-on sources, suggesting that orientation factors into the appearance of BALs. The evidence here---of a difference in IR luminosities between BAL quasars and unabsorbed quasars---may be ascribed to evolution. This suggests that a merging of the current BAL paradigms is needed to fully describe the class.
160 - Ravi Joshi 2012
We present the results of an optical photometric monitoring program of 10 extremely radio loud broad absorption line quasars (RL-BALQSOs) with radio-loudness parameter, R, greater than 100 and magnitude g_i < 19. Over an observing run of about 3.5-6. 5 hour we found a clear detection of variability for one of our 10 radio-loud BALQSOs with the INOV duty cycle of 5.1 per cent, while on including the probable variable cases, a higher duty cycle of 35.1 per cent is found; which are very similar to the duty cycle of radio quiet broad absorption line quasars (RQ-BALQSOs). This low duty cycle of clear variability per cent in radio-loud sub-class of BALQSOs can be understood under the premise where BALs outflow may arise from large variety of viewing angles from the jet axis or perhaps being closer to the disc plane.
Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observers line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-qu iet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5$<z<$3.5) that allowed us to observe the Mg II and H$beta$ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables.
It has been argued that certain broad absorption line quasars are viewed within 35 degrees of the axis of a relativistic radio jet, based on two-epoch radio flux density variability. It is true if the surface brightness of a radio source is observed to change by a sufficiently large amount, the inferred brightness temperature will exceed 10^12 K and Doppler beaming in our direction must be invoked to avoid a Compton cooling catastrophe. However, flux density changes cannot be linked to surface brightness changes without knowledge of the size of the source. If an optically thick source changes in projected area but not surface brightness, its brightness temperature is constant and its flux variability yields no constraint on its orientation. Moreover, as pointed out by Rees, spherical expansion of an emission source at relativistic speeds yields an apparently superluminal increase in its projected area, which can explain short-timescale flux density variability without requiring a relativistic jet oriented near to our line of sight. Therefore, two-epoch radio flux density variability by itself cannot unambiguously identify sources with jets directed towards us. Only VLBI imaging can robustly determine the fraction of broad absorption line quasars which are polar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا