ﻻ يوجد ملخص باللغة العربية
On the basis of 16 years of spectroscopic observations of the four components of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range, we analyze the spectral differences observed in the P Cygni-type line profiles and have used the microlensing effect to derive new clues to the BAL profile formation. We confirm that the spectral differences observed in component D can be attributed to a microlensing effect lasting at least a decade. We show that microlensing magnifies the continuum source in image D, leaving the emission line region essentially unaffected. We interpret the differences seen in the absorption profiles of component D as the result of an emission line superimposed onto a nearly black absorption profile. We also find that the continuum source and a part of the broad emission line region are likely de-magnified in component C, while components A and B are not affected by microlensing. We show that microlensing of the continuum source in component D has a chromatic dependence compatible with the thermal continuum emission of a standard Shakura-Sunyaev accretion disk. Using a simple decomposition method to separate the part of the line profiles affected by microlensing and coming from a compact region from the part unaffected by this effect and coming from a larger region, we disentangle the true absorption line profiles from the true emission line profiles. The extracted emission line profiles appear double-peaked, suggesting that the emission is occulted by a strong absorber, narrower in velocity than the full absorption profile, and emitting little by itself. We propose that the outflow around H1413+117 is constituted by a high-velocity polar flow and a denser, lower velocity disk seen nearly edge-on.
We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to visible rest-frame spectral range. We observe strong microlensing signatures in lensed image D, and we
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure,
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac
CRTS J084133.15+200525.8 is an optically bright quasar at z=2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V~17.3 between 2002 and 2008. Then, over the following five year
We present 21 examples of C IV Broad Absorption Line (BAL) trough disappearance in 19 quasars selected from systematic multi-epoch observations of 582 bright BAL quasars (1.9 < z < 4.5) by the Sloan Digital Sky Survey-I/II (SDSS-I/II) and SDSS-III. T