ﻻ يوجد ملخص باللغة العربية
At a quantum critical point (QCP) -- a zero-temperature singularity in which a line of continuous phase transition terminates -- quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at non-zero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature metastable state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.
We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical fiel
In metals near a quantum critical point, the electrical resistance is thought to be determined by the lifetime of the carriers of current, rather than the scattering from defects. The observation of $T$-linear resistivity suggests that the lifetime o
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calcu
The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly str
We numerically study a model of interacting spin-$1/2$ electrons with random exchange coupling on a fully connected lattice. This model hosts a quantum critical point separating two distinct metallic phases as a function of doping: a Fermi liquid pha