ترغب بنشر مسار تعليمي؟ اضغط هنا

Low temperature thermodynamic properties near the field-induced quantum critical point in DTN

202   0   0.0 ( 0 )
 نشر من قبل Franziska Weickert
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field $H_{c1} approx 2$,T in DTN . A $T^{3/2}$ behavior in the specific heat and magnetization is observed at very low temperatures at $H=H_{c1}$ that is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at $H_{c1}$ shows minor deviations from the expected $T^{1/2}$ behavior. Our experimental study is complemented by analytical calculations and Quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gr{u}neisen parameters that are ideal quantities to identify QCPs. Both parameters diverge at $H_{c1}$ with the expected $T^{-1}$ power law. By using the Ehrenfest relations at the second order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.



قيم البحث

اقرأ أيضاً

The presence of a quantum critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T, r) in the vicinity of a QCP, yielding particularly str ong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of $ delta S / delta B$ near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), $(delta T / delta B)_S$, and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu$^{2+}$-containing coordination polymer, which is a very good realization of a spin-1/2 antiferromagnetic Heisenberg chain - one of the simplest quantum-critical systems.
In this work we study thermodynamic manifestations of the quantum criticality in multiband unconventional superconductors. As a guiding example we consider the scenario of magnetic quantum critical point in the model that captures superconductivity c oexistence with the spin-density wave. We show that in situations when superconducting order parameter has incidental nodes at isolated points, quantum magnetic fluctuations lead to the renormalization of the relative $T$-linear slope of the London penetration depth. This leads to the nonmonotonic dependence of the penetration depth as a function of doping and the concomitant peak structure across the quantum critical point. In addition, we determine contribution of magnetic fluctuations to the specific heat at the onset of coexistence phase. Our theoretical analysis is corroborated by making a comparison of our results with the recent experimental data from the low-temperature thermodynamic measurements at optimal composition in BaFe$_2$(As$_{1-x}$P$_x$)$_2$.
146 - Y. H. Kim , N. Kaur , B. M. Atkins 2009
At a quantum critical point (QCP) -- a zero-temperature singularity in which a line of continuous phase transition terminates -- quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at non-zero temperatures . Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature metastable state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.
234 - J. Bauer , P. Jakubczyk , 2011
We compute the transition temperature $T_c$ and the Ginzburg temperature $T_{rm G}$ above $T_c$ near a quantum critical point at the boundary of an ordered phase with a broken discrete symmetry in a two-dimensional metallic electron system. Our calcu lation is based on a renormalization group analysis of the Hertz action with a scalar order parameter. We provide analytic expressions for $T_c$ and $T_{rm G}$ as a function of the non-thermal control parameter for the quantum phase transition, including logarithmic corrections. The Ginzburg regime between $T_c$ and $T_{rm G}$ occupies a sizable part of the phase diagram.
The thermal conductivity of YbRh2Si2 has been measured down to very low temperatures under field in the basal plane. An additional channel for heat transport appears below 30 mK, both in the antiferromagnetic and paramagnetic states, respectively bel ow and above the critical field suppressing the magnetic order. This excludes antiferromagnetic magnons as the origin of this additional contribution to thermal conductivity. Moreover, this low temperature contribution prevails a definite conclusion on the validity or violation of the Wiedemann-Franz law at the field-induced quantum critical point. At high temperature in the paramagnetic state, the thermal conductivity is sensitive to ferromagnetic fluctuations, previously observed by NMR or neutron scattering and required for the occurrence of the sharp electronic spin resonance fracture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا