ﻻ يوجد ملخص باللغة العربية
In metals near a quantum critical point, the electrical resistance is thought to be determined by the lifetime of the carriers of current, rather than the scattering from defects. The observation of $T$-linear resistivity suggests that the lifetime only depends on temperature, implying the vanishing of an intrinsic energy scale and the presence of a quantum critical point. Our data suggest that this concept extends to the magnetic field dependence of the resistivity in the unconventional superconductor BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ near its quantum critical point. We find that the lifetime depends on magnetic field in the same way as it depends on temperature, scaled by the ratio of two fundamental constants $mu_B/k_B$. These measurements imply that high magnetic fields probe the same quantum dynamics that give rise to the $T$-linear resistivity, revealing a novel kind of magnetoresistance that does not depend on details of the Fermi surface, but rather on the balance of thermal and magnetic energy scales. This opens new opportunities for the investigation of transport near a quantum critical point by using magnetic fields to couple selectively to charge, spin and spatial anisotropies.
We performed single electron tunneling measurements on bilayer ruthenate Sr$_3$Ru$_2$O$_7$. We observe an unusual oscillation in tunneling magnetoresistance near the metamagnetic quantum phase transition at temperatures below 7 K. The characteristic
Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which st
Heavy fermion systems, and other strongly correlated electron materials, often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact Quantum Monte Carlo (QMC) simulations, we examine the effect of impurities in t
We present a study of thermoelectric coefficients in CeCoIn_5 down to 0.1 K and up to 16 T in order to probe the thermoelectric signatures of quantum criticality. In the vicinity of the field-induced quantum critical point, the Nernst coefficient nu
An extended Hubbard model on a honeycomb lattice with two orbitals per site at charge neutrality is investigated with unbiased large-scale quantum Monte Carlo simulations. The Fermi velocity of the Dirac fermions is renormalized as the cluster charge