ﻻ يوجد ملخص باللغة العربية
We numerically study a model of interacting spin-$1/2$ electrons with random exchange coupling on a fully connected lattice. This model hosts a quantum critical point separating two distinct metallic phases as a function of doping: a Fermi liquid phase with a large Fermi surface volume and a low-doping phase with local moments ordering into a spin-glass. We show that this quantum critical point has non-Fermi liquid properties characterized by $T$-linear Planckian behavior, $omega/T$ scaling and slow spin dynamics of the Sachdev-Ye-Kitaev (SYK) type. The $omega/T$ scaling function associated with the electronic self-energy is found to have an intrinsic particle-hole asymmetry, a hallmark of a `skewed non-Fermi liquid.
Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously repor
Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which st
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effe
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of