ﻻ يوجد ملخص باللغة العربية
We show that, if L is an extremal Type II lattice of rank 40 or 80, then L is generated by its vectors of norm min(L)+2. This sharpens earlier results of Ozeki, and the second author and Abel, which showed that such lattices L are generated by their vectors of norms min(L) and min(L)+2.
We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type I
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la
We show that if L is an extremal even unimodular lattice of rank 40r with r=1,2,3 then L is generated by its vectors of norms 4r and 4r+2. Our result is an extension of Ozekis result for the case r=1.
For a positive integer $s$, a lattice $L$ is said to be $s$-integrable if $sqrt{s}cdot L$ is isometric to a sublattice of $mathbb{Z}^n$ for some integer $n$. Conway and Sloane found two minimal non $2$-integrable lattices of rank $12$ and determinant
Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in m