ﻻ يوجد ملخص باللغة العربية
For a positive integer $s$, a lattice $L$ is said to be $s$-integrable if $sqrt{s}cdot L$ is isometric to a sublattice of $mathbb{Z}^n$ for some integer $n$. Conway and Sloane found two minimal non $2$-integrable lattices of rank $12$ and determinant $7$ in 1989. We find two more ones of rank $12$ and determinant $15$. Then we introduce a method of embedding a given lattice into a unimodular lattice, which plays a key role in proving minimality of non $2$-integrable lattices and finding candidates for non $2$-integrable lattices.
Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.
New series of $2^{2m}$-dimensional universally strongly perfect lattices $Lambda_I $ and $Gamma_J $ are constructed with $$2BW_{2m} ^{#} subseteq Gamma _J subseteq BW_{2m} subseteq Lambda _I subseteq BW _{2m}^{#} .$$ The lattices are found by restric
Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investiga
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equat
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la