ﻻ يوجد ملخص باللغة العربية
Let $F$ be a graph. A hypergraph is called Berge $F$ if it can be obtained by replacing each edge in $F$ by a hyperedge containing it. Given a family of graphs $mathcal{F}$, we say that a hypergraph $H$ is Berge $mathcal{F}$-free if for every $F in mathcal{F}$, the hypergraph $H$ does not contain a Berge $F$ as a subhypergraph. In this paper we investigate the connections between spectral radius of the adjacency tensor and structural properties of a linear hypergraph. In particular, we obtain a spectral version of Tur{a}n-type problems over linear $k$-uniform hypergraphs by using spectral methods, including a tight result on Berge $C_4$-free linear $3$-uniform hypergraphs.
In this paper, we characterize the extremal digraphs with the maximal or minimal $alpha$-spectral radius among some digraph classes such as rose digraphs, generalized theta digraphs and tri-ring digraphs with given size $m$. These digraph classes are
For every positive integer $t$ we construct a finite family of triple systems ${mathcal M}_t$, determine its Tur{a}n number, and show that there are $t$ extremal ${mathcal M}_t$-free configurations that are far from each other in edit-distance. We al
We establish a so-called counting lemma that allows embeddings of certain linear uniform hypergraphs into sparse pseudorandom hypergraphs, generalizing a result for graphs [Embedding graphs with bounded degree in sparse pseudorandom graphs, Israel J.
We present a variant of a universality result of Rodl [On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2, 125-134] for sparse, $3$-uniform hypergraphs contained in strongly jumbled hypergraphs. One of the i
An oriented hypergraph is a hypergraph where each vertex-edge incidence is given a label of $+1$ or $-1$. The adjacency and Laplacian eigenvalues of an oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and Laplacian matrices o