ﻻ يوجد ملخص باللغة العربية
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean lattices. Namely, we use the finite-dimensional representation theory of sl_2 to derive a decomposition theorem for the spaces of discrete homogeneous polynomials in terms of the spaces of discrete harmonic polynomials, and prove a generalized MacWilliams identity for harmonic weight enumerators. We then present several applications of harmonic weight enumerators, corresponding to some uses of weighted theta functions: an equivalent characterization of t-designs, the Assmus-Mattson Theorem in the case of extremal Type II codes, and configuration results for extremal Type II codes of lengths 8, 24, 32, 48, 56, 72, and 96.
We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of the second author for extremal Type II lattices. Specifically, we show that for $n in {8, 24, 32, 48, 56, 72, 96}$ every extremal Type I
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radus algorithms, we present an algorithm to find
We show that, if L is an extremal Type II lattice of rank 40 or 80, then L is generated by its vectors of norm min(L)+2. This sharpens earlier results of Ozeki, and the second author and Abel, which showed that such lattices L are generated by their vectors of norms min(L) and min(L)+2.
We give a new, purely coding-theoretic proof of Kochs criterion on the tetrad systems of Type II codes of length 24 using the theory of harmonic weight enumerators. This approach is inspired by Venkovs approach to the classification of the root syste
New series of $2^{2m}$-dimensional universally strongly perfect lattices $Lambda_I $ and $Gamma_J $ are constructed with $$2BW_{2m} ^{#} subseteq Gamma _J subseteq BW_{2m} subseteq Lambda _I subseteq BW _{2m}^{#} .$$ The lattices are found by restric