في نموذج كيميائي كموني، وصلت ديوسي وفيلدمان وكوسلوف إلى افتراض أن الحد الأقصى لإيثان المزيجات المعينة هو الإيثان النسبي عندما يتغير حجم النظام إلى الأبد. وتم إثبات الافتراض في هذا البحث للمصفوفات الكثافة. وكان الإثبات الأول تحليليًا ويستخدم قانون الأعداد الكبيرة الكموني. والثاني يوضح العلاقة بسعة القناة لكل تكلفة في القنوات الكلاسيكية الكمونية. وقد دفعت كلا الإثباتين إلى تطوير الافتراض.
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density matrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalization of the conjecture.
Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, whic
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a
I show that classical capacity per unit cost of noisy bosonic Gaussian channels can be attained by employing generalized on-off keying modulation format and a projective measurement of individual output states. This means that neither complicated col
This paper investigates the capacity and capacity per unit cost of Gaussian multiple access-channel (GMAC) with peak power constraints. We first devise an approach based on Blahut-Arimoto Algorithm to numerically optimize the sum rate and quantify th
We calculate numerically the capacity of a lossy photon channel assuming photon number resolving detection at the output. We consider scenarios of input Fock and coherent states ensembles and show that the latter always exhibits worse performance tha