ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Channel Capacities Per Unit Cost

108   0   0.0 ( 0 )
 نشر من قبل Mark Wilde
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.



قيم البحث

اقرأ أيضاً

323 - I. Csiszar , F. Hiai , D. Petz 2007
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density m atrices. The first proof is analytic and uses the quantum law of large numbers. The second one clarifies the relation to channel capacity per unit cost for classical-quantum channels. Both proofs lead to generalization of the conjecture.
We discuss quantum capacities for two types of entanglement networks: $mathcal{Q}$ for the quantum repeater network with free classical communication, and $mathcal{R}$ for the tensor network as the rank of the linear operation represented by the tens or network. We find that $mathcal{Q}$ always equals $mathcal{R}$ in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities $mathcal{Q}_1$ and $mathcal{R}_1$ are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that $mathcal{R}_1$ is a natural upper bound of $mathcal{Q}_1$. We analyze the possible gap between $mathcal{R}_1$ and $mathcal{Q}_1$ for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network.
Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.
The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.
171 - Mark M. Wilde 2020
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum superchannel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا