ﻻ يوجد ملخص باللغة العربية
We calculate numerically the capacity of a lossy photon channel assuming photon number resolving detection at the output. We consider scenarios of input Fock and coherent states ensembles and show that the latter always exhibits worse performance than the former. We obtain capacity of a discrete-time Poisson channel as a limiting behavior of the Fock states ensemble capacity. We show also that in the regime of a moderate number of photons and low losses the Fock states ensemble with direct detection is beneficial with respect to capacity limits achievable with quadrature detection.
In a quantum mechanical model, Diosi, Feldmann and Kosloff arrived at a conjecture stating that the limit of the entropy of certain mixtures is the relative entropy as system size goes to infinity. The conjecture is proven in this paper for density m
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a
Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point ch
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover,