ﻻ يوجد ملخص باللغة العربية
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.
We give the trade-off curve showing the capacity of a quantum channel as a function of the amount of entanglement used by the sender and receiver for transmitting information. The endpoints of this curve are given by the Holevo-Schumacher-Westmorelan
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point ch
In this short note, I show how a recent result of Alhejji and Smith [arXiv:1909.00787] regarding an optimal uniform continuity bound for classical conditional entropy leads to an optimal uniform continuity bound for quantum conditional entropy of cla
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra
We consider the transmission of classical information over a quantum channel by two senders. The channel capacity region is shown to be a convex hull bound by the Von Neumann entropy and the conditional Von Neumann entropy. We discuss some possible a