ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback

208   0   0.0 ( 0 )
 نشر من قبل Mark Wilde
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.



قيم البحث

اقرأ أيضاً

205 - Peter W. Shor 2004
We give the trade-off curve showing the capacity of a quantum channel as a function of the amount of entanglement used by the sender and receiver for transmitting information. The endpoints of this curve are given by the Holevo-Schumacher-Westmorelan d capacity formula and the entanglement-assisted capacity, which is the maximum over all input density matrices of the quantum mutual information. The proof we give is based on the Holevo-Schumacher-Westmoreland formula, and also gives a new and simpler proof for the entanglement-assisted capacity formula.
We introduce various measures of forward classical communication for bipartite quantum channels. Since a point-to-point channel is a special case of a bipartite channel, the measures reduce to measures of classical communication for point-to-point ch annels. As it turns out, these reduced measures have been reported in prior work of Wang et al. on bounding the classical capacity of a quantum channel. As applications, we show that the measures are upper bounds on the forward classical capacity of a bipartite channel. The reduced measures are upper bounds on the classical capacity of a point-to-point quantum channel assisted by a classical feedback channel. Some of the various measures can be computed by semi-definite programming.
67 - Mark M. Wilde 2019
In this short note, I show how a recent result of Alhejji and Smith [arXiv:1909.00787] regarding an optimal uniform continuity bound for classical conditional entropy leads to an optimal uniform continuity bound for quantum conditional entropy of cla ssical--quantum states. The bound is optimal in the sense that there always exists a pair of classical--quantum states saturating the bound, and so no further improvements are possible. An immediate application is a uniform continuity bound for entanglement of formation that improves upon the one previously given by Winter in [arXiv:1507.07775]. Two intriguing open questions are raised regarding other possible uniform continuity bounds for conditional entropy, one about quantum--classical states and another about fully quantum bipartite states.
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra te triples, consisting of the classical communication rate, the quantum communication rate, and the entanglement consumption rate of a particular coding scheme. The crucial protocol in achieving the boundary points of the capacity region is a protocol that we name the classically-enhanced father protocol. The classically-enhanced father protocol is more general than other protocols in the family tree of quantum Shannon theoretic protocols, in the sense that several previously known quantum protocols are now child protocols of it. The classically-enhanced father protocol also shows an improvement over a time-sharing strategy for the case of a qubit dephasing channel--this result justifies the need for simultaneous coding of classical and quantum information over an entanglement-assisted quantum channel. Our capacity theorem is of a multi-letter nature (requiring a limit over many uses of the channel), but it reduces to a single-letter characterization for at least three channels: the completely depolarizing channel, the quantum erasure channel, and the qubit dephasing channel.
We consider the transmission of classical information over a quantum channel by two senders. The channel capacity region is shown to be a convex hull bound by the Von Neumann entropy and the conditional Von Neumann entropy. We discuss some possible a pplications of our result. We also show that our scheme allows a reasonable distribution of channel capacity over two senders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا